

Session 4

Harnessing the Offshore Renewables Opportunity

Harnessing the Offshore Renewables Opportunity

Introduction

Rod Paterson, NSO Deputy Director

Supporting Supply Chain Growth

Andy Macdonald 14th March 2023

Credit: Equinor Hywind Floating Offshore Wind Farm

The Offshore Renewable Energy Catapult

The UK's leading technology innovation and research centre for offshore renewable energy

Mission: to accelerate the creation & growth of UK companies in the offshore renewable energy sector.

- Unique facilities, research, engineering capabilities
- Bringing together innovators, industry & academia
- Accelerating creation and growth of UK companies
- Reducing cost and risk in renewable technologies
- Growing UK economic value
- Enabling the transition to a low carbon economy

Offshore wind global capacity forecast

2020-50 CAGR 600 дV 11% 400 CAGR 200 21% 0 2025 2040 2020 2030 2035 2045 2050 UK Europe exc. UK China Asia exc. China Other ORE Catapult, 2022

Annual installations increase from ~22GW in 2021 to 36GW in 2030 and 34GW in 2050

Vessel Demand Factors

- Increased deployment
 - Increased installation rate and operational wind farms
- Distance from shore
 - Change from CTVs to SOVs
- Deeper waters floating wind
 - New installation and O&M methods required

SOV Vessel Demand to 2050

- Offshore wind still a rapidly expanding industry, significant vessel newbuilds needed to support this.
- Between 62-149 vessels required in European Waters by 2030, and up to 309 by 2050.
- None of current UK operated SOVs built in the UK.
- None operating zero emission propulsion technologies.

Supply Chain Support

How can Catapult help?

Supply chain growth needs technology and company development with both underpinned by innovation.

- Research
- Test and validation
- Commercialisation

Supply Chain Programmes

Companies at different stages require different types of support:

- Launch Academy for early stage
- F4OR to get ready to win work
- OWGP to enable company growth

Introduction to OWGP

OWGP is a long-term business transformation programme for the UK offshore wind supply chain

Funding:

- OWIC (offshore wind developers) are funding OWGP.
- OWGP will leverage regional and national public funding

Delivery:

Budget of £100m over ten years to provide:

- Business Transformation structured programmes to help companies grow.
- Grant Funding for developing new products, services, capacity and capability

The aims of OWGP are:

Increase UK content in UK projects

Increase economic value (jobs and GVA)

Increase exports to global markets

Increase UK IP embedded in supply chain

OWGP Programmes

Grant Funding

Innovation Grants £25k - £100k Development Grants £100k - £1m

Dr Claire Canning OWGP Programme

Tom Speedie

ning

in

lin

OWGP Programme Manager (Grant Funding)

claire.canning@ore.catapult.org.uk +44 (0) 75515 33555

OWGP Junior Project Manager

tom.speedie@ore.catapult.org.uk

OWGP Support Reach Business Transformation Grant Funding Business Transformation

bing 🕽

- Over £13m funded to date
- 200 companies supported
- Next funding call from May '23

Business Transformation

WEST (Wind Expert Support Toolkit)

Foundation - provision of specialist advice, market intelligence and insight into the sector for all businesses.

Sharing in Growth Offshore Wind

Advanced - embedding proven approaches to drive organisational improvements with exiting OSW supply chain.

in

OWGP Programme Manager (Business Transformation)

lynne.mcintosh@ore.catapult.org.uk +44 (0) 74355 47661

OWGP Junior Project Manager

Matt Brown

matthew.brown@ore.catapult.org.uk

CONTACT US

info@ore.catapult.org.uk

ore.catapult.org.uk

ENGAGE WITH US

GLASGOW BLYTH **LEVENMOUTH GRIMSBY ABERDEEN CHINA LOWESTOFT** WALES **CORNWALL**

Morgan, Mona, and Morven Joint Venture

John Davies

Partners in UK offshore wind

14 March 2023

SOV Zero Emissions Fuel & Technology Study

Lauren Hadnum

14/03/23

SOV Opportunity & Challenge

- Offshore wind still a rapidly expanding industry, significant vessel newbuilds needed to support this.
- Between 62-149 vessels required in European Waters by 2030, and up to 309 by 2050.
- No SOVs currently servicing UK windfarms were built in the UK.
- No SOVs currently servicing UK windfarms utilise zero emission propulsion technologies.

A comprehensive study of all aspects of developing and deploying a "greener" SOV from the UK

Technology review

Fuels:				
Biodiesel	Battery Electric			
LNG	Hydrogen			
Methanol	LOHC			
Ammonia	Hybrids			

Scenario 1~4:

Dual fuel ICE with LNG/Biodiesel/Methanol/Ammonia

Scenario 9~12:

Diesel generator with

Scenario 13: Full Battery

Scenario 14: Fuel cell with Hydrogen and Battery

Scenario 5~8:

Fuel cell with Ammonia, Cracking system and Battery

Dual Fue 2 Dual Fuel F

LNG/Biodiesel/Methanol/Ammonia and Battery

Technology selection

- We've completed a process of assessing the available technologies against a range of technical, environmental, economic, safety and fuel availability factors, based on a need for TRL6 by 2026.
- Aligning with industry trends we see LNG, electric and biodiesel vessels score well.
- However, LNG and biodiesel not considered further due to:
 - Minimal technical merit these are available.
 - Lack of production and port availability in Scotland.
 - Residual environmental impact.
 - Bio sourced fuels not preferred for maritime usage.

Worst

Best

Technologies we're progressing to conceptual design

CATAPULT Offshore Renewable Energy

Supply Chain assessment

CATAPULT Offshore Renewable Energy The potential UK SOV supply chain

Next steps...

Dec	Jan	Feb	Mar	Apr	May		
Vessel Technology Study							
	Manufacturing Technology & Supply Chain Study						

We'd like to hear from you if:

- You have the ability to deliver technology, components or skills relevant to SOV build.
- You have queries or comments on today's presentation.
- You'd like to be included in dissemination of project outcomes.

Email us:

lauren.hadnum@ore.catapult.org.uk

cy.keogh@the-mtc.org

THANK YOU Q & A

